
-t-

f I'LE COPY

At!b. ;w I.

DTIC
JAN 1 81989:

DMSTRhBrrON STATrIMrNTr ALApproved for public releosel
Distribution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

89 117 '136

AFIT/GE/ENG/88D- 23

DT I
f-"LECTC

JAN 1 8 1989

PROBLEM SPECIFIC APPLICATIONS ____O _____

FOR NEURAL NETWORKS S

THESIS ,[, K..
Mark K . Lutey -"! ' "" -------.......

Captain, USAF
By

AFIT/GE/ENG/88D-23 ii I,..

A,1

ApI f

Approved for public release; distribution unliniited

AFIT/GE/ENG/88D-23

PROBLEM SPECIFIC APPLICATIONS

FOR NEURAL NETWORKS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Mark K. Lutey

Captain, USAF

December 1988

Approved for public release; distribution unlimited

Acknowledgements

This work is dedicated to my loving wife Joan and my son

David who spent the many hours alone while this thesis work

was conducted. Also, I wish to thank Dr. Matthew Kabrisky

and Capt Steve Rogers for their encouragement and inspira-

tion which made this thesis possible. I shall remember them

always.

iii

Table of Contents

Page

Acknowledgements ii

List of Figures v

List of Tables ix

Abstract. x

I. Introduction.

Background. 2
Single-Layer Perceptron 4
Multi-Layer Perceptron. 4
Kohonen Self-Organizing Feature Map . . . 6

Definitions 7
Discriminative Functions. 7
Threshold. 8

Problem 8
Scope. 10
Approach 11
Sequence of Presentation. 12

Ii. Accelerated Learning for the Multi-Layer
Perceptron by Modifying the Output Error 15

Introduction 15
Multi-Layer Perceptron Training Algorithm 15
Modified Training Rule. 17
Testing. 18

Test One. 18
Test Two 20
Test Three 21

Discussion 24
Unexpected Results. 24
New Error Term. 28

III. Accelerated Learning for the Multi-Layer
Perceptron By Expanding the Sigmoid Function . 29

Introduction. 29
Increasing the Rate 29
Rate (P) Testing. 30
New Training Rules. 31
Testing. 33

Test One. 34
Test Two. 34

Results and Discussion. 34

iii

Page

IV. Additional Class Training for a Multi-Layer
Perceptron 40

Introduction. 40
Background 40
Testing. 41

Test One. 41
Test Two 42
Test Three 43

Results and Discussion. 45

V. Noise Reduction Using A Multi-Layer Perceptron . 52

Introduction. 52
Background 52
Testing. ... *.*.*..........*................52

Phase One Testing....... 53
Phase Two Testing. 54

Results and Discussion. 55

VI. Isolated Word Recognition Using a Multi-Layer
Perceptron and a Kohonen Self-Organizing
Feature Map. 61

Introduction. 61
Background 61
Training 64
Testing. 67
Results and Discussion. 67

VII. Improvement of the Basic Neuron 73

Introduction. 73
Improvements. 73
Training. 77
Other Capabilities............................7
P Training. 80
0 Training. 81
Testing. 83
Conclusions and Recommendations 89

VIII. conclusion 94

Bibliography 95

Vita 97

iv

List Of Figures

Figure Page

1. Neural Network Models 2

2. A Single-Layer Perceptron 4

3. Decision Boundary Placement 5

4. A Multi-Layer Perceptron 5

5. A Kohonen Self-Organizing Feature Map 7

6a. Sigmoid Function 9

6b. Hard Limiter 9

6c. Threshold Logic 9

7. Calculated Error Term 16

8. Calculated Error Using Equation (3) 17

9. Accuracy Using Table II Test Vectors 20

10. Test Two Data 21

11. Accuracy For Test Two Data 22

12. Accuracy For Test Three Data 23

13. Two Class Problem With Infinite Slope 25

14. Results With Threshold Tied To +1 26

15. Results With Threshold Tied To -1 27

16. Rate (P) Testing Data 31

17. Performance Versus Rate After 20000 Training
Iterations 32

18. Accuracy After 1000 Training Iterations 35

* 19. Accuracy After 2000 Training Iterations 35

20. Accuracy After 5000 Training Iterations 36

21. Accuracy After 20000 Training Iterations 37

4 22. Performance for Test Two with a Rate of
5.0 37

v

• " V

Figure Page

23. Performance for Test Two with a Rate of
10.0 38

24. Original Training Data 42

25. Introduction of a New Class For Test One 43

26. Introduction of a New Class for Test Two 44

27. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-10-8-3 for Test One Data 45

28. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-16-12-3 for Test One Data . . . 46

29. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-21-14-3 for Test One Data . . . 46

30. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-30-16-3 for Test One Data . . . 47

31. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-36-20-3 for Test One Data . . . 47

32. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-12-12-3 for Test Two Data . . . 48

33. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-16-16-3 for Test Two Data . . . 48

34. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-12-12-3 for Test Three 49

35. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-16-16-3 for Test Three 49

36. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-10-8-3 for Test Three 50

37. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-16-12-3 for Test Two Data . . . 50

38. Output With No Noise Added 55

39. Output With Noise Added 56

40. Output When the Input Frequencies are 320,
810, and 1330 Hz With No Noise Added 56

vi

Figure Page

41. Output When the Input Frequencies are 50,
750, and 1500 Hz With No Noise Added 57

42. Output When the Input Frequencies are 50,
750, and 1500 Hz With Noise Added 57

43. Output When the Input Frequency is 300 Hz
With Noise Added 58

44. Output When the Input Frequency is 800 Hz
With Noise Added 58

45. Part of the Word "One" With No Noise Added . 59

46. Part of the Word "One" With Noieise Added . 59

47. Spectrograms for the Phrase "We are here" . . . 62

48. Diagram of the Speech Recognition System 63

49. Memory Map 66

50. Usual Neuron With Changes 74

51. Hard Limiter Function 76

52. Sigmoid Function 76

53. The Addition Of Two Sigmoids 81

54. The Addition Of Two Hard Limiters 83

55. Exclusive-Or Data 84

56. Training Accuracy for the Exclusive-Or Data
Problem 85

57. Three Class "roblem 86

58. Training Accuracy for the Three Class
Problem 87

59. Training Accuracy for the Three Class
Problem with the Order of the Class
Values Switched 88

60. Training Accuracy Using the Sigmoid Function
for the Exclusive-Or Problem 89

Vii

Figure Page

61. Training Accuracy Using Rate (p) Training for
the Exclusive-Or Problem 90

62. Neurologs in a Multi-Layer Perceptron
Configuration 91

63. Data for the Multi-Layer Perceptron
Configuration Test 92

64. Training Accuracy Using for a Multi-Layer
Perceptron Configuration 93

viii

List of Tables

Table Page

I. Central Data Vectors 19

II. Test Vectors 19

III. First Male Speaker Using Known Starting and
Ending Locations 68

IV. First Male Speaker Using Different Starting
and Ending Locations - Set One 68

V. First Male Speaker Using Different Starting
and Ending Locations - Set Two 69

VI. Female Speaker Using Known Starting and
Ending Locations 69

VII. Female Speaker Using Different Starting and
Ending Locations 70

VIII. Second Male Speaker Using Known Starting and
Ending Locations 70

IX. Second Male Speaker Using Different Starting
and Ending Locations 71

ix

AFIT/GE/ENG/88D-23

Abstract

The purpose of this thesis is to examine several topics

relating to neural networks. First, the investigation of

the error output for a multi-layer perceptron is examined to

determine if the error calculation can be modified to

decrease the training time. The result is a slight improve-

ment.

Next, the sigmoid function usually used by multi-layer

perceptrons is investigated to determine if modifying terms

within the sigmoid function will decrease training time. An

improvement is found in the performance and in some cases by

much as an order of magnitude.

Then the subject of adding an additional class to the

problem space is examined. Regardless of the data class

added or the network size, there is no advantage to using a

previously trained multi-layer perceptron as a starting

state to be trained additionally to include the new data

class. Nothing is gained compared to starting the network

form its untrained state.

This is followed by an investigation to determine

whether a multi-layer perceptron can be used to reduce noise

added to a signal. Results show that the multi-layer per-

ceptron, when trained with three specific frequencies,

reduced noise but would "resonate" at these frequencies

x

only. The network may also be limited to the number of

individual frequencies on which it will perform noise reduc-

tion.

Next, the combination of using a Kohonen self-organizing

feature map and a multi-layer perceptron to perform isolated

word recognition is tested. An 80 per cent accuracy is

achieved for speaker dependent, isolated word recognition.

Accuracy falls to approximately 40 per cent for speaker

independent, isolated word recognition.

Finally, an improvement in the basic neuron element

usually used by the single and multi-layer perceptrons is

presented. Results show that the computational power for a

single neuron is greatly enhanced and that use in a multi-

layer perceptron configuration is still possible.

xi

PROBLEM SPECIFIC APPLICATIONS FOR NEURAL NETWORKS

I. Introduction

Man is capable of performing feats of calculation, such

as speech recognition, that easily surpass the performance

of today's super-computers. How the human brain accom-

plishes this feat is still not understood. But, over the

last 40 years, researchers have made some progress in under-

standing how the human brain may operate. Some of the

researchers are looking at the neurons (that is, the nerve

cells) of which the human brain is mainly composed. One

result of their studies is the analytical modelling of how

neurons, or a collection of neurons, may operate. These

models have led to the development of the area of research

called "neural networks".

Since neural networks mimic the parallel connections

found in the human brain, they provide the capability to do

calculations in parallel that can be simulated by today's

typical serial-type computer. Also, like the human brain,

damage to a small number of neurons will not disable the

whole network, unlike damage to a computer which could mean

complete failure. Thus, these neural networks seem to push

us closer to achieving the capabilities that are provided by

I

the human brain.

Unfortunately, since this area of research is relatively

new, the extent of the models' capability is not fully

understood. Therefore, more research in the area of neural

networks will be necessary before these models have the

possibility of achieving the computational feats of man.

Background

Neural networks currently use a variety of ways to model

neurons by employing either electrical circuits or mathemat-

ical models used by computers, as shown in Figure 1. To

MATHEMATICAL -NEURON

X1

X2 W
I

ELECTRICAL 41EUPON 0

X
I

Figure 1. Neural Network Models. (From 10:211).

mimic neurons, the networks control how much the neuron

responds to an input, to how many other neurons any one

neuron will be connected, and what the strength of its syn-

aptic connections (the area of contact between neurons) will

be.

Typically, it is known how to control the responses and

2

how the neurons will be connected; what is not always known

are the strengths of the synaptic connections between the

neurons. Depending on the problem that is to be solved,

these strengths (or weights) will need to be adjusted to

find the solution to a particular problem. Thus, these

neurons are put through a training period that will allow

the neurons to change their weights as required by the prob-

lem. Some networks do not require a training period since

they do not change any of their initial conditions and these

are calculated before the networks are used in problem sol-

ving (5:7). Training is accomplished by presenting a set of

chosen inputs (data) repeatedly until the network changes

its weights to achieve the desired output.

Training of the network can be supervised or unsuper-

vised (5:6). If the networks are trained under supervision,

they must be told how to change their weights by the user.

If the network is to be unsupervised in training, then the

network makes all the decisions on how to change the weights

among the neurons. Also, some networks allow for continuous

training while the network is in use.

Three of the most well-known neural networks are the

single-layer perceptron, the multi-layer perceptron, and the

Kohonen self-organizing feature map (5:6). The basic dif-

ferences between these neural networks are whether they need

supervised or unsupervised training. All three of these

networks can accept discrete (binary) or continuous inputs

(5:6).

3

Single-Laver Perceptron. The single-layer perceptron

(shown in Figure 2) uses either discrete or continuous input

data and requires supervised training (5:13). The single

neuron can make decisions only between two separate data

classes. It accomplishes this by creating a hyperplane to

separate the two data classes and therefore acts as a deci-

sion boundary, shown in Figure 3. If the two classes begin

to overlap, the single-layer perceptron will have trouble

deciding to which class an input belongs.

xl

Xn- ! tjn-1_

Figure 2. A Single-Layer Perceptron (From 5:13).

Multi-Layer Percentron. The multi-layer perceptron

(shown in Figure 4) uses either continuous or discrete

inputs and requires supervised training (5:15). This net-

work is composed of single-layer perceptrons layered in rows

between the input and the output neurons. Since the middle

layers cannot see the outputs, they are called the hidden

layers (5:17). Errors are calculated at the outputs and are

propagated down to each of the neurons in the layers below.

4

x,

)x 0

DEC I S ION BOUNDARY
=-uwX -I xo +

x= 6 01 x

Figure 3. Decision Boundary Placement (From 5:13).

output

output

hidden) .
layer .

hidden) X.-

layer

layer

input

Figure 4. A Multi-Layer Perceptron (From 5:16).

5

This downward propagation of the errors allows the neurons

in the hidden layers to adjust the weights.

This network, unlike the single-layer perceptron, can

distinguish more than two classes (5:16). It accomplishes

this by creating numerous hyperplanes that can make bound-

aries surrounding each data class if necessary. As the

boundaries are made, the network determines whether the data

classes are disjoint (broken into pieces). If so, all the

separate regions belonging to the same class are joined

together.

However, one problem with the multi-layer perceptron is

that it usually requires more extensive training than that

experienced by a single-layer perceptron (5:18).

Kohonen Self-Organizing Feature Map. The Kohonen

self-organizing feature map (or Kohonen net) can use either

continuous or discrete inputs and allows unsupervised train-

ing. This network differs from the single and multi-layer

perceptrons, in that every neuron in the network can see the

inputs, as shown in Figure 5. As the training progresses,

the neurons will "decide" among themselves which neuron or

group of neurons (called a neighborhood) best represents the

input (4:18). Thus, if the class to which an input belongs

is not known beforehand, this network will group that input

with other similar inputs to a certain area within the net-

work. This network is called self-organizing because of

this intrinsic proclivity to group of similar inputs (4:13).

It has been suggested that the Kohonen net may not only

6

: ~no o test

x0 x 1 Xn-

Figure 5. A Kohonen Self-Organizing Feature Map.

(From 5:18)

model how neurons work, but may also model how the brain

tends to map certain inputs to special areas of the brain

(4:10). This network also performs extremely well with

noisy inputs, since any input will tend to excite at least

one group of neurons (4:19).

A word of caution is in order, however, since virtually

no brain mechanisms are understood outside of the sen-

sory/motor mapping regions and a person would have to be

foolhardy or ignorant to claim that one neural network or

another actually behaves like real brain circuits.

Definitions

Discriminative Functions. This term is used collec-

tively to explain how a neuron will respond in terms of the

sum of its weighted inputs. The discriminative function may

be any one of three nonlinear, positively increasing func-

7

tions that are used in neural networks, as shown in Figure

6. Note that the outputs of these functions may vary; for

instance, the hard limiter function can range from zero to

one if desired.

Threshold. An input, in addition to the weighted

inputs, used to help form the decision boundary between two

classes. The threshold is tied to a constant value and may

or may not undergo training.

Problem

The primary purpose of this thesis is to examine several

questions:

1) Is there a method to reduce the training time for a

multi-layer perceptron by adjusting the output error calcu-

lations? (Chapter II)

2) Can adjusting the sigmoid function reduce the train-

ing time for a multi-layer perceptron? (Chapter III)

3) Can more classes be added to a trained multi-layer

perceptron with the desired result being the reduction of

the overall training time? (Chapter IV)

4) Is a multi-layer perceptron capable of reducing

noise in a signal? (Chapter V)

5) Can a Kohonen Neural Network and a multi-layer per-

ceptron work together to perform isolated word recognition?

(Chapter VI)

6) Can the basic neuron model be improved and still be

8

I --

;t I

x
Figure 6a. Sigmoid Function.

Figure 6b. Hard Limiter.

'/.

/

7Z

-IC 0.
I'

Figure 6c. Threshold Logic.

9

used in a multi-layer perceptron configuration? (Chapter

VII)

ScO~e

In chapters two and three, data from a previous thesis

by Captain Dennis Ruck (11) is used. It was found that

there were errors when raw data was not correctly normalized

before being used as inputs to a neural network. Since the

intention was not optimization of performance, the data was

left as originally normalized.

In chapter four, additional class training is examined

using only two dimensional data in order to facilitate the

visualization of the placement of hyperplanes. Also, since

the multi-layer perceptron makes similar calculations for

all of its neurons (and thus the hyperplane placement)

regardless of the dimensionality of the problem, the results

are applicable for higher dimensions. Data from the Ruck

thesis is not used in this application, since the way this

data is distributed in higher dimensions is not known.

For chapter five, only one network size is to be used.

The intent of this chapter is to examine whether or not

noise reduction in an analog, one dimensional signal can be

accomplished using a multi-layer perceptron.

The intent of chapter six is to examine whether or not

isolated word recognition is possible by combining the spe-

cial properties found in a Kohonen self-organizing feature

map and a multi-layer perceptron. No attempt is to be made

10

f11

to segment words; therefore, continuous-speech recognition

will not be examined.

Finally, in chapter seven, changes in the basic neuron

are presented. Testing is limited to a few examples to

determine if the new training rules are favorable to real

applications.

Approach

To answer the first problem question, the calculation of

the errors that will be propagated down through the multi-

layer perceptron are examined. Next, a more desirable error

calculation will be developed based on the previous analy-

sis. Finally, the new error calculation will be tested to

determine whether or not training time is improved.

For question two, the sigmoid function is examined to

determine its effect on the training time. Next, the sig-

moid function is adjusted and equations are developed to

account for the change in the sigmoid function. Finally,

the network is tested to again determine whether or not

training time is improved.

To answer question three, a multi-layer perceptron is

first trained for two simple data classes. More neurons are

then added to the network and a new class is introduced to

the training data. Then each network's performance is moni-

tored and the training time is compared to that of a new

network originally trained for all three classes. Several

sizes and techniques are used to see if any reduction in

12.

training time occurs.

In answering question four, a multi-layer perceptron is

constructed based on the work of Tamura and Waibul (13).

Testing of the network takes place after it is trained using

a sum of three sine waves (of different frequencies) with

noise added. Next, a network trained using digitized

samples of speech with noise added is tested. Finally, the

results are examined to determined the noise reduction capa-

bility of a multi-layer perceptron.

To answer question five, a Kohonen self-organizing fea-

ture map is trained to store spectrograms of digitized

speech from an individual speaker. Afterwards, a multi-

layer perceptron is trained using a "map" of the Kohonen

network. The two networks are then connected and tested to

determine if the combination of the two networks will per-

form speaker dependent and independent speech recognition.

In answering question six, the basic neuron is examined

and changes are made to its structure. Next, equations are

presented to allow the new neuron model to train. Finally,

the new neuron model is tested to measure the computational

power.

Sequence of Presentation

Chapter two investigates the output error calculations

employed by a multi-layer perceptron. A new error calcula-

tion is then presented and tests are performed to determine

its effectiveness in reducing training time. Finally, con-

12

clusions and recommendations Lre provided.

Chapter three examines the sigmoid function in general.

Terms in the sigmoid function previously ignored are re-

introduced and equations are presented for a multi-layer

perceptron based on the developed terms. Tests are per-

formed to determine if a decrease in training time occurs.

Finally, conclusions and recommendations are provided.

Chapter four discusses the problem of using a partially

trained multi-layer perceptron to decrease training time

when a new class is introduced. Tests are performed for

several multi-layer perceptron networks of various sizes.

Also, different data classes are presented to determine

whether or not a partially trained multi-layer perceptron

can decrease training time. Finally, conclusions and recom-

mendations are presented.

Chapter five describes the basic idea of using a multi-

layer perceptron to perform noise reduction in a signal.

The two types of training that are to be performed are dis-

cussed. A quick description of the testing follows.

Finally, results and recommendations are presented.

Chapter six discusses the system constructed of the

Kohonen net and the multi-layer perceptron and how it will

perform isolated word recognition. Then the training of the

two networks is described. There is a brief discussion on

the testing to be performed. Finally, the results and

future recommendations are provided.

Chapter seven begins by describing the changes that are

13

made to the structure of the neuron. Then the training

rules for this new neuron are presented for use in both a

single-layer and multi-layer perceptron configuration.

Next, the added capabilities that are provided by the new

neuron are examined. Then a description of the testing that

is to be performed is presented. Finally, the results and

recommendations are given.

14

Ci

0

14

C ~ .iiI i l l l i l ii..

II. Accelerated Learning for the Multi-Layer

Perceptron by Modifying the Output Error

Introduction

The purpose of this chapter is to develop an acceler-

ation rule based on the examination of the output error for

a multi-layer perceptron. The first section in this chapter

describes the multi-layer perceptron training rule for the

output layer. The next section quickly shows the develop-

ment of the acceleration rule by modifying the output error.

The third and fourth sections briefly describes the testing

and the results. An unexpected result found during testing

is discussed in the final section.

Multi-Layer Perceptron Training Algorithm

As mentioned earlier, the multi-layer perceptron may

take an extremely long time to train its weights. In the

training algorithm, one requirement is that the output neur-

ons update their weights by the equation (3:137):

wij (t+l) = wij (t) + I 6j x' i (1)

where wij is the weight from node i in the hidden layer

below to the output node j at time t, q is the gain (typi-

cally 0.2 to 0.4), 6 j is the calculated error at the output

node j, and x'1i is the input to the output node j on the

weight wij. The error term 6j for the output node is given

15

by the equation (3:13):

S = yj (1 - yj) (dj - yj) (2)

where yj is the actual output at node j and dj is the

desired output at node j. Also, by using a regular sigioid

function, yj is limited to values between zero and one and

therefore dj is either zero or one.

As can be seen by equation (2), when yj approaches zero

the calculated error term goes to zero. Likewise, if the

output approaches one the calculated error goes to zero.

Figure 7 shows the calculated error for yj over the range

0.2-

0.15

0.1 - d=1

0.05

00

0.05d=O

-0.1

-0.15

-0.2 . . .
0 0.2 0.4 0.6 0.8

Y

Figure 7. Calculated Error Term.

from zero to one. In either of these two conditions, the

term dj - yj may provide little or no error information that

16
Id

can be propagated back down to the hidden layers. Thus, the

network will take longer to converge to the correct desired

response as the calculated responses move closer to the

desired responses.

Modified TraininQ Rule

As seen in Figure 7, a more desirable equation would

permit the error to propagate down when there is an actual

error. Such an effect can be achieved by using the follow-

ing equation:

69 = yj4 - 2 yj2 + dj (3)

where yj and dj are as described in equation (2). Figure

8 shows the calculated error term using equation (3). As

0.9-
0.8
0.7

0.6
0.5 - d=1

0.4-

0.3-
0.2-
0.1-
0 -

0

-0.2
-0.3- -

-0.4-
-0.5
-0.6
-0.7
-0.8
-0.9

0 0.2 0.4 0.6 0.8 1

Y

Figure 8. Calculated Error Using Equation (3).

17

can be seen from Figure 8, when yj now approaches zero and

the dj is one, the calculated error term goes to zero.

Likewise, when yj approaches zero and dj equals one, the

calculated error goes to zero. By similar observations, it

can be seen that when yj no longer matches dj, there is an

error of one that is of opposite sign. Thus, the full error

information is now being propagated downward and the hidden

layers are no longer deprived of useful information.

Equation (3) is applied only to the output layer since

the desired response (dj's) is not known in the hidden

layers. Further, the remaining steps in the training algo-

rithm stay the same as in the original multi-layer percep-

tron training algorithm. The reader should consult the

article by Lippmann for further information on the training

process (5:15).

Testing

Testing consists of three separate tests. In each test,

a multi-layer perceptron using equation (3) and a regular

multi-layer perceptron are compared. In all cases, the

momentum term (see Lippmann (5:17)) is zero.

Test One. In test one, a very simple input data set is

used consisting of three different classes. Table I below

shows the three "central" vectors that are used to generate

the input data.

18 j

Table 1. Central Data Vectors

Vector Component

Class A 1.0 1.0 1.0 -1.0 -1.0 -1.0
Class B 1.0 -1.0 1.0 1.0 -1.0 1.0
Class C 1.0 1.0 -1.0 1.0 -1.0 -1.0

Training consists of selecting one of the three central

vectors at random and then adding independently a small

random value ranging uniformly from -0.2 to 0.2 to each

component of the chosen vector.

Training is stopped after every 20 training iterations

and the network is tested. A set of 24 pre-selected test

vectors are used and are given in Table II. Notice that the

Table II. Test Vectors

Test# Component Values Closest Class

0 1.0 1.0 1.0 -1.0 -1.0 -1.0 A
1 1.0 -1.0 1.0 1.0 -1.0 1.0 B
2 1.0 1.0 -1.0 1.0 -1.0 -1.0 C
3 1.2 1.2 1.2 -1.2 -1.2 -1.2 A
4 0.8 0.8 0.8 -1.2 -1.2 -1.2 A
5 1.2 1.2 1.2 -0.8 -0.8 -0.8 A
6 0.8 0.8 0.8 -0.8 -0.8 -0.8 A
7 1.2 -1.2 1.2 1.2 -1.2 1.2 B
8 0.8 -0.8 0.8 0.8 -0.8 0.8 B
9 1.2 -0.8 1.2 1.2 -0.8 1.2 B

10 0.8 -1.2 0.8 0.8 -1.2 0.8 B
11 1.2 1.2 -0.8 1.2 -0.8 -0.8 C
12 1.2 1.2 -1.2 1.2 -1.2 -1.2 C
13 0.8 0.8 -0.8 0.8 -0.8 -0.8 C
14 0.8 0.8 -1.2 0.8 -1.2 -1.2 C
15 2.0 2.0 2.0 -2.0 -2.0 -2.0 A
16 2.0 -2.0 2.0 2.0 -2.0 2.0 B
17 2.0 2.0 -2.0 2.0 -2.0 -2.0 C
18 0.5 0.5 0.5 -0.5 -0.5 -0.5 A
19 0.5 -0.5 0.5 0.5 -0.5 0.5 B
20 0.5 0.5 -0.5 0.5 -0.5 -0.5 C
21 1.0 0.5 1.0 -0.5 -1.0 -0.5 A
22 1.0 -0.5 1.0 0.5 -1.0 0.5 B
23 1.0 0.5 -1.0 0.5 -1.0 -0.5 C

19

test vectors 0 to 14 are within the training inputs. Test

vectors 15 to 23 are out of the range of the training data,

but their Euclidean distances make them closer to one class

than to another. When the output node giving the largest

response to these vectors matches in class, the output is

considered to be correct. Figure 9 shows a plot of the

testing scores for each of the two networks as training

progresses.

100

'0-

Go-

70-

60-

0

10

10 100 O0 300 M0 1710 30M

a of Trulrng Itmuftl
a Equulfon (2) + a Equulfon (3)

Figure 9. Accuracy Using Table II Test Vectors.

Test Two. In the second part of testing, a more compli-

cated data set is chosen. Again, the data falls within

three distinct, uniformly distributed classes and one of the

20

three classes is disjoint. Figure 10 shows how the data is

distributed. As in test one, the nets are identical except

that one network is using equation (3).

After every 1000 training iterations, 50 tests are per-

formed to determine each net's accuracy. Testing data con-

sists of randomly choosing a sample point within one of the

four distinct areas that compose the three data sets. The

correct response requires that the output node match in

class and have an output greater than 0.9, while all the

1.

4.6

B •
0 -69 -06 -10. -0 2 1. 2 .0D:4 . 0.2 69 1.0'-.2._

Figure 10. Test Two Data.

other output nodes have an output of 0.1 or lower. Figure

11 shows a plot of the testing scores for the two nets as

training progresses.

Test Three. In the third test, the data is from the

21

thesis work by Capt Dennis Ruck (11) and consists of doppler

images collected on 84 observations of tanks, jeeps, trucks,

and petroleum oil and lubricant tankers. Twenty-two dimen-

sional, normalized (between zero and one) Zernike moments

are then computed and stored in a file (the reader is

advised to read the thesis by Capt Ruck for more information

pertaining to Zernike moments (11)). As mentioned pre-

viously in the scope of this paper, errors in the normaliza-

tion process were not corrected. Thus, the reader will

100-

9080-

70-

Go-

so-

40-

30-

20-

10-

0 , i. . ..1 . . .' I. '"" . . .

0 10000 20000 30000 40000 50000

I of Training Itwartns
a a Equalli (2) + - Equoffon (3)

Figure 11. Accuracy For Test Two Data.

notice that no one network achieves 100 per cent correct

accuracy in identification for test three.

22

As before, two identical multi-layer perceptrons, only

differing by equation (3), are used. The 84 vectors are

divided into 56 training vectors and 28 testing vectors.

Training consists of selecting one of the 56 training vec-

tors at random for each of the 50000 training iterations.

Testing is then performed after every 500 training iter-

ations and each of the 28 testing vectors are then presented

to the network. Figure 12 shows a plot of the testing

scores for the two networks as training progresses.

70-

~40-

30-

20-

0 10000 20000 30000 40000 50000

a =Equaflon (2) + a Equaten (3)

Figure 12. Accuracy For Test Three Data.

23

Discussin

As can be seen in Figures 9, 11, and 12 the equation (3)

does provide a slight improvement in the training perfor-

mance. Also, there is no additional computational burden;

therefore, there is no increase in the run time for this

method compared to the regular multi-layer perceptron train-

ing time.

It is interesting to note the marked improvement in Test

One using the simple data. This result is due to the ease

in the testing criteria; only the output neuron with the

maximum value had to match in class with the input data.

The resulting performance is still significant due to the

fact that if a MAXNET (a neural network that is capable of

selecting the output node that has the highest output) were

used in identifying the output neuron with the maximum out-

put, this same curve would be displayed.

Unexpected Results

Early in the research an unexpected result occurred.

According to Lippmann, the thresholds could be trained by

using similar update rules while assuming that the thresh-

olds are tied to a constant value (5:17). What was not

stated is, what the constant value should be. Therefore,

the assumption is made that the constant value of positive

one may be used. Testing shows for some cases where the

hyperplanes between two classes has infinite or nearly infi-

nite slope that the thresholds have the tendency to go to an

24

extreme value if a positive one value is used.

As an example of this phenomena, a single-layer percep-

tron consisting of one neuron is trained for two classes as

shown in Figure 13. As can be seen in Figure 13, there is a

hyperplane of infinite slope separating the two classes at

x0 equals 0.2. The result of using a threshold tied to a

positive one causes the threshold to keep increasing

linearly as shown in Figure 14. This in turn causes the

output to always be at a value of positive one since the

threshold becomes the dominant term in the sigmoid equation.

Further, every time the perceptron output is zero, there is

XI

~~ ~~~""" "":"":"":"
.. , , ,,..... , ,.:::::: :: ::
,

:. '::. :. :. '. ':. ' ':.. .'.: ::':: :'..

Figure 13. Two Class Problem With Infinite Slope.

25

.... . -- -- - -- -- , ,,m,,-m-----., mm..........m,,

30

25-

20-

15

, 10-

0

> 5

-5-

-15

0 50 100 150 20

Sof Training 1trallons
1 =WO + =W1 Thsria

Figure 14. Results With Threshold Tied To +1.

an error and the threshold is increased in value.

If the threshold is tied to a negative one, the problem

is resolved and the threshold no longer becomes the dominant

term as shown in Figure 15. As can be seen, the weights

become dominant and the perceptron trains as expected.

In a multi-layer perceptron, tying the thresholds to a

positive one will cause the network to produce only some of

the correct answers. Typically, since it is not known if

the data can be separated by hyperplanes with near infinite

slope, the use of tying the thresholds to a positive one

should be avoided especially when the thresholds are to be

trained. Thus, it is recommended that the thresholds be

26

-2

-3

-5

0 50 100 150 200

a of Training lieraflons
3 =WO + =W o =Thta

Figure 15. Results With Threshold Tied To -1.

tied to a constant of negative one.

It should be noted that the multi-layer perceptron uses

the Generalized Delta Rule developed by Rummelhart (10:123)

and is based upon a least means squared approach where the

error is (3:142):

Error = 1/2 (dj - yj) 2 (4)

where dj is the desired output at node j and yj is the

actual output at node j. When the partial derivative of

equation (4) is taken with respect to the weights, the

threshold term is considered to be a constant. (The reader

is advised to see the paper written by Rogers and Stright6

(8) for more information.) However, if the situation is

27

reversed and the partial derivative of equation (4) is taken

with respect to the threshold and the weights are considered

to be at constant values, then the threshold update rule is

found to be:

e(t + 1) = e(t) - 7 6 j x'j (5)

where 9(t) is the threshold at time t, n is the gain term,

6j is the error term from equation (2), and x'1i is the input

to node j from node i from the layer below. Thus, equation

(5) supports the conclusion that the thresholds should be

tied to a negative one since there is a negative sign in

front of the gain (n) term.

New Error Term

Finally, it should be noted that by using the least mean

squared approach, equation (3) can be derived from a post-

ulated error term of:

Error = yj 3 / 3 + yj2 /2 -

- ln(l - yj) - dj x'1i wij (6)

where yj, dj, x'1i, and wij are defined as before in

equations (1) and (2). It is interesting to note as yij

approaches one, the error goes to negative infinity. No

explanation can be given for the meaning of equation (6)

other than it enables the derivation of a better response to

errors.

28

III. Accelerated Learning for the Multi-Layer

Perceptron By Expandinq the Sigmoid

Function

Introduction
S|

The purpose of this chapter is to explore decreasing the

training time for a multi-layer perceptron. The first sec-

tion briefly discusses the sigmoid function and the effect
0I

of increasing the rate at which the sigmoid rises. In the

second section a test is performed showing the effects of

increasing the rate of the sigmoid. The third section
0a

introduces a new accelerated learning method based on the

increased rate of the sigmoid. The fourth section describes

the testing that is performed. The last section discusses

the results and the need for more testing in this area.

Increasing the Rate
0l

Several attempts have been made at reducing the training

time required for multi-layer perceptrons. For example,

Shepanski (12) and Dahl (2) both have derived methods to

decrease the training time. However, their methods increase

the computational burden and in some cases cannot be applied

directly to a general form of a multi-layered perceptron.

However, it has been noted by Yang and Guest (14:369) that

by increasing the rate at which the sigmoid rises, the

training time is decreased without an increase in the number

of computations that need to be performed.

29

(-,, ',,m,,,, uimmtimU li HP •m•..

In general, the sigmoid function has the form:

y = (c / (1.0 + exp(-P * a + 0)) - m (7)

where e (typically one) is the amplitude, P (typically one)

is the rate at which the sigmoid rises, a for neural net-

works is the weighted sum of the inputs minus the threshold,

(typically zero) allows the sigmoid to shift left or right

on the a axis, and A (typically zero) allows the sigmoid to

shift up or down on the y axis. By increasing P, the a * -

surface between classes begins to sharpen. Thus, a larger

error term can be calculated even when the two classes are

close to each other. Therefore, it seems reasonable to

increase P for the multi-layered perceptron since better

error information can be propagated down through the net.

Rate (B) Testing

To see if the rate (P) increase can decrease the train-

ing time, a simple test is performed. The data is uniformly

distributed among three classes. One of the classes is a

disjoint region as shown in Figure 16.

A three layer multi-layer perceptron (with 2 inputs, 12

neurons in the first layer, 12 neurons in second layer, and

3 output neurons) is used and after 20000 training iter-

ations a test is performed. Fifty test vectors are chosen

at random from one of the four data regions. Scoring is

computed based on requiring a 0.9 level or better for the

correct output, while all other outputs must be at 0.1 or

lower. Figure 17 shows that as the rate increases, perfor-

30

mance decreases (except for a rate of 10). One would expect

Xl

- . C

~B

B . ,2-

-11,4-.

- 39

Figure 16. Rate (0) Testing Data.

that the curve should go to 100 per cent and stay there if

an increase in rate improves the training speed. Instead,

Figure 17 shows that the network becomes unstable (that is,

accuracy rolls off) as the rate increases beyond the value

of 10.

New Training Rules

The reason the network becomes unstable is due to the

fact that the original training rules do not explicitly

account for an increase in P. As mentioned previously, the

multi-layer perceptron uses the equation:

Error = 1/2 (dj(t) - yj(t)]2 (8)

31

where dj is the desired output at node j and yj(t) is the

0 Correct

40so80

0 5 10 18

Rate

Figure 17. Performance Versus Rate After 20000 Training

Iterations.

calculated output at node j at time t. It can be shown by

using equations (7) and (8) that the new training rule for

the output of the multi-layer perceptron becomes:

wij(t + 1) = wij(t) - (13/6) [yj(t) + 0]

[yj(t) + 0 - 6] x'i (9)

where wij is the weight from node i in the hidden layer

below to node j in the output layer, n is the gain term, c

is the amplitude of the sigmoid, 0 is the shift term in

equation (7), and x'1i is the input to node j from node i in

the hidden layer. The threshold training for the output

node j becomes:

e9 (t + 1) = e 9 (t) + (MO/E) [yj(t) +]

[yj (t) + 0 - 6] (10)

where the terms are the same as in equation (9) and ej(t) is

the threshold at time t.

32

For the hidden layers, the training rule for the weights

becomes:

wij(t + 1) = wij(t) - (qp/e) [yj(t) +]

[yj(t) + 0 - E] (Z k wij) x'i (

where wij is the weight from either the hidden layer node i

below or from the input i to node j, 6k is the error at node

k in the layer above, x'1i is the input to node j from either

node i in the hidden layer below or the input i, and the

rest of the terms are those previously mentioned. Likewise,

the threshold training rule for the hidden node j becomes:

ej(t + 1) = ej(t) + (0/) [yj(t) + 0] [yj(t) + 0 - c]

(Z 6k wjk) (12)

where the terms are those previously mentioned. Note, that

when e equals one, P equals one, and 0 equals zero, the

equations (9) to (12) reduce to the original multi-layer

Testing

Testing consists of two separate tests. In the first

test, a multi-layer perceptron of identical size uses the

same data as previously mentioned. In the test, different

rates are again used to see if the new equations will pro-

vide stability.

In the second test, a multi-layer perceptron uses the

Ruck (11) data introduced in the previous chapter. Two

different rates are tried for the Ruck (11) data. Also, as

in chapter two, no attempt is made at fixing the testing

data.

33

Test One. Testing consists of three uniformly distrib-

uted data sets that were originally shown in Figure 16. A

multi-layer perceptron is constructed of the same size as in

the original rate testing but now employing equations (9) to

(12). Also, e and 0 are kept to their original values of

one and zero respectively. Thus, it should become clear

whether or not any improvement using the new equations and

increasing the sigmoid is possible or not.

Six different P terms are chosen (1.0, 2.5, 5.0, 7.5,

10.0, and 15.0) for testing. Training is stopped after

1000, 2000, 5000 and 20000 iterations. At each of these

stopping points, 50 tests are performed and the score is

noted as before in the original rate testing.

Test Two. In test two, a multi-layer perceptron of the

size described in Chapter One is used. That is, there are

22 inputs, 20 neurons in the first layer, 6 neurons in the

second layer, and 4 output neurons. The data is as before:

56 training vectors and 28 testing vectors. First, the

multi-layer perceptron will train using a rate (fl) equal to

five. As in Chapter One, a total of 50000 training iter-

ations are to be used. Testing is done after every 500

training iterations. Finally, a new multi-layer perceptron

of the same size is used with a new rate of ten. Training

and testing is conducted in the same manner.

Results and Discussion

Figures 18 through 21 show the performance of the test

34

one training. After 1000 (see Figure 18) training iter-

ations the multi-layer perceptron is beginning to respond to

the increased rate of the sigmoid.

%Correct

100

80-

80

40-

20

0 i
0 5 10 15

Rate

Figure 18. Accuracy After 1000 Training Iterations.

After 2000 training iterations (Figure 19), the networks

with the rates of 10.0 and 15.0 are already scoring 100 per

cent while a regular multi-layer perceptron (that is a mul-

%Correct
100

80-

80

40

20

0 U

0 5 10 16

Rate

Figure 19. Accuracy After 2000 Training Iterations.

35

ti-layer perceptron where the rates of the sigmoids are

equal to one) is still scoring 0 per cent.

By 5000 training iterations (Figure 20), the networks

with rates greater than 5.0 are at 100 per cent with no sign

of instability at the higher rates. Also note that the

multi-layer perceptron with a rate of one is beginning to

respond to the training.

%Correct
100

80-

40

20-

0 5 10 15

Rate

Figure 20. Accuracy After 5000 Training Iterations.

Finally, after 20000 training iterations (Figure 21) all

the networks with a rate greater than 1.0 are scoring 100

per cent. In comparison with Figure 17, there are no signs

of instability as the rate increases. The figures show that

training time is decreased by an order of magnitude if using

a rate of 10.0 or 15.0.

Figures 22 and 23 show the performance of the test two

training. As observed in Figure 22, the multi-layer percep-

tron, using a rate of 5.0, is doing slightly better than the

36

%Correct

0

80-

40-

20

0
0 6 10 15

Rate

Figure 21. Accuracy After 20000 Training Iterations.

80-

70-

80-

50-

00

00-

0 12500 25000 37500 50000

Iof Training ilerations
(3 Rae oft1.0 + =Ra of 5.0

Figure 22. Performance for Test Two with a Rate of
5.0.

37

80-

70 .

50-

50-

0L 40

30

20

10-
0o i

0 12500 25000 37500 50000

of Training Iterations
o =RaI of 1.0 + = Rte of 10.0

Figure 23. Performance for Test Two with a Rate of
10.0.

regular multi-layer perceptron. However, as can be seen in

Figure 23, when the rate is 10.0 the performance jumps up to

75 per cent after 21000 training iterations. It is not

known why the multi-layer perceptron does not respond to

training until after 21000 iterations when the rate is at

ten. But ovarall, the networks did as well or better than

the regular multi-layer perceptron without increasing the

number of computations.

Though the results are promising, other preliminary

tests indicate that if e is set to two and 0 is set to one

(the outputs of the neurons are now negative one to positive

one), the network becomes unstable as the rate (p) increases

38

above one. Therefore, more testing and investigating will

be required to fully determined what the true error equation

should be in order to permit an increase in all factors, or

whether there is a limit to the type of sigmoid curve that

can be used in training. However, if the outputs are kept

between to zero and one, increases in the rates are allowed.

This method can be used without additional computational

burdening and an increase in training speed is therefore

possible.

39

IV. Additional Class Training for a Multi-Layer

Perceptron

Introduction

The purpose of this chapter is to discuss whether a

partially trained multi-layer perceptron can train faster

than an untrained multi-layer perceptron when a new class is

to be added to the problem space. The first section dis-

cusses the background of adding a new class. The second

section describes the testing that is to be performed. The

final section presents the results of testing and describes

the effect of adding a new class to a previously trained

multi-layer perceptron.

Background

Typically, a multi-layer perceptron is trained with all

the classes it will ever need to identify. It has been

suggested that perhaps when a new class is to be added, the

training time for a multi-layer perceptron could be reduced

by using an previously trained network and adding new neur-

ons for additional class discrimination (9). This seems

reasonable since most of the network is already trained for

the previous classes and therefore the only training that is

needed is for those new neurons that are added to the net-

work.

40

.l U L . i u L A E ul I . . .m i _I * I U I , i ,

Testing

To test this suggestion, three separate tests are per-

formed using two dimensicnal data so that the movement of

hyperplanes can be easily understood. However, if higher

dimensions of data were used, the results would be similar

since the training rules for the multi-layer perceptron will

move all hyperplanes in the same manner.

The multi-layer perceptrons are initially trained for

two classes. In the first test, a complicated data region

is added and multi-layer perceptrons of various sizes are

tried to determine when the network will train to discrimi-

nate all three classes. In test two, a simple data region

is added and again multi-layer perceptrons of various sizes

are tested to determine when the network will train to dis-

criminate all three classes. Finally, in test three, both

the more complicated and the simple data regions are used,

but in each case only the newly added neurons will undergo

training.

Test One. Initially, a multi-layer perceptron is

trained to distinguish between two classes (A and B) with

uniformly distributed data. Class B is disjoint as shown in

Figure 24. Using a multi-layer perceptron consisting of 6

neurons in the first hidden layer, 6 neurons in the second

hidden layer, and 2 neurons in the output layer; 100 per

cent correct identification is achieved after 50000 training

iterations. (Scoring is based on 0.9 or better for the

correct class while the other output is at 0.1 or lower).

41

74

Next, a new class (C) is introduced that also has a uniform

distribution and is disjoint as shown is Figure 25.

X1

xii

-4-- I I'

-1.6 -0 -6 6-6 4-6. .20.6.4 +06 '-1.0> 6
-6.2

-0.4

-0.
-1.8

Figure 24. Original Training Data.

As mentioned, new neurons are added to each layer and

the network is retrained using random samples from each

class. Data from each class is used to prevent the network

from unlearning the two previously trained classes. Train-

ing is stopped after every 1000 steps and testing is per-

formed to determine the relationship of accuracy versus the

required training time to add a new class. Training is

stopped after 50000 training iterations and the network size

is increased. In each case, a new network matching this

size increase is trained for comparison.

Test Two. As in test one, a multi-layer perceptron

42

X1

fAI

4.2--
1 X

'-1 0-e 9-0,6-18A -02 +r,2 .:4 +0;6 +89 1.01 8

C 4 l

Figure 25. Introduction of a New Class For Test One.

consisting of 6 neurons in the first layer, 6 neurons in the

second layer, and 2 neurons in the output layer is trained

to achieved 100 per cent accuracy for the data shown in

Figure 24 after 50000 training iterations. In this test

however, the new class C to be added is the region shown in

Figure 26. As before, neurons are added, and training is

stopped after every 1000 training iterations, and the net-

work is tested to determine accuracy. Again, training is

compared to a new network of the same size.

Test Three. In test three, the multi-layer perceptron

consisting of 6 neurons in the first layer, 6 neurons in the

second layer, and 2 neurons in the output layer is trained

for two classes (A and B) and a 100 per cent accuracy is

43

XI -

.9r

Ise _@.S -W -0 4 -0.2 . 2 +@ 4 x

-Fa.2 !

-13.4,

-1,3.

Figure 26. Introduction of a New Class for Test Two.

achieved after 50000 iterations. There are two parts to

this test. First, the data region added (C) is that from

test one as shown in Figure 25 and only the new neurons that

are added to accommodate the new class are to be trained.

In the second part of this test, the data region added is

that from test two as shown in Figure 26. Again, only the

newly added neurons are trained. Testing is stopped as

before after 1000 training iterations and the network is

tested for accuracy. All results are to be compared to new

networks of the same size.

It should be noted in both parts of this test, that

because only newly added neurons undergo training, the con-

nections from the new neurons to the old neurons are set to

44

zero and not permitted to undergo training. Whereas, the

new connections from the old neurons to the new neurons are

randomly set and permitted to undergo training. If this

procedure is not followed, the old neurons will be receiving

new data from the connections made from the new neurons.

Thus, the old neurons would be required to update their

weights, or at least their thresholds, because new informa-

tion is being received.

Results and Discussion

Figures 27 through 31 shows the scoring accuracy of a

partially trained network versus a newly trained network as

the net size grows for test one training. (Note: in the

following figures, the "Net Size" is as follows: number of

inputs - number of first layer neurons - number of second

layer neurons - output neurons). As can be seen, there is

%Correct

100

80-

40

20-

0 10000 20000 30000 40000 50000

of Training Iterations

Spartially trained -o- w not

Figure 27. Accuracy for a Multi-Layer Perceptron Using
a Net Size of 2-10-8-3 for Test One Data.

45

%Correct

100

ar t80

00:

40

0 10000 20000 30000 40000 80000

of Training Iterations
- partially trained - ,- . w noet

Figure 28. Accuracy for a Multi-layer Perceptron Using
a Net Size of 2-16-12-3 for Test One Data.

%Correct

80

0

40

20

0
0 10000 20000 30000 40000 80000

of Training Iterations
partially trained -- - now not

Figure 29. Accuracy for a Multi-layer Perceptron Using

a Net Size of 2-21-14-3 for Test One Data.

only a slight advantage when a partially trained network is

used because some of the hyperplanes will have to move when

a new data region is added. Thus, the hyperplanes in both

the partially trained network and the new network can be

considered in random positions and will take about the same

time to train.

46

%Correct
100

80'

20-

0 10000 20000 30000 40000 50000

of Training Iterations

- . partially trained -4 - nw not

Figure 30. Accuracy for a Multi-layer Perceptron Using
a Net Size of 2-30-16-3 for Test One Data.

%Correct
100

80

60-

40

20

0,I

0 10000 20000 30000 40000 80000

of Training Iterations
partially trained "-- * nw net

Figure 31. Accuracy for a Multi-layer Perceptron Using

a Net Size of 2-36-20-3 for Test One Data.

Figures 32 and 33 show the results of test two training.

From these figures it can be seen that the partially trained

network does not train as might be expected. Thus, there is

no advantage to using a partially trained network. In this

case, the newly added data does not fall between the old

data regions as in test one. Therefore, the hyperplanes

47

%Correct

100

80-

40-

20

0,
0 10000 20000 30000 40000 60000

of Training Iterations
- partially trained --- - new net

Figure 32. Accuracy for a Multi-layer Perceptron Using
a Net Size of 2-12-12-3 for Test Two Data.

%Correct

80

80

40-

20

0
0 10000 20000 30000 40000 o0000

of Training Iterations
Spartially trained - • new net

Figure 33. Accuracy for a Multi-layer Perceptron Using

a Net Size of 2-16-16-3 for Test Two Data.

will be in the correct position when old data is selected

and in the wrong position when new data is selected. Thus,

a cycle develops moving the hyperplanes toward old data when

old data is selected and away when new data is selected.

Figures 34 and 35 show the results of the test three

training with the simple data region C. Figures 36 and 37

48

show the results of the test three training with the more

complicated data region C. Even though training is per-

formed only on the newly added neurons, that is, only the

new neurons are allowed to adjust their weights and thresh-

olds, it can be seen from Figures 34 through 37 that no

progress is being made by the partially trained networks.

%Correct

100

80-

80

40-

20 "

0 10000 20000 30000 40000 50000

of Training Iterations
partially trained - now net

Figure 34. Accuracy for a Multi-layer Perceptron Using
a Net Size of 2-12-12-3 for Test Three.

100Correct

80-

80-o I

0 10000 20000 30000 40000 50000

of Training Iterations

-partially trained - -now net

Figure 35. Accuracy for a Multi-layer Perceptron Using
a Net Size of 2-16-16-3 for Test Three.

49

%Correct

100o-
80

0

20-

0 10000 20000 30000 40000 50000

of Training Iterations

- partially trained j " now not

Figure 36. Accuracy for a Multi-layer Perceptron Using
a Net Size of 2-10-8-3 for Test Three.

%Correct100

80

000

40

20

-

0 10000 20000 30000 40000 50000

of Training Iterations
partially trained *now net

Figure 37. Accuracy for a Multi-layer Perceptron Using

a Net Size of 2-16-12-3 for Test Two Data.

In both cases (simple and complicated data regions) the

old hyperplanes are not allowed to move at all, since their

weights and thresholds did not undergo training. Therefore,

when the simpler data region is used and data is selected

from this region, the old hyperplanes produce an output for

class B. Likewise, there is also an output for class C

5o

produced by the new hyperplanes.

This effect becomes even worse when the more complicated

data region is used, since there is an increase in probabil-

ity that data will fall on one side or the other of the

older class B hyperplanes. Only when class A data region is

selected is the output from the network correct.

In conclusion, it is recommended that multi-layer per-

ceptrons be reset to the usual random initial condition

state when a new data class is to be added, since it is

generally not known whether the data region to be added will

fall between the older data regions. Even if it were known,

there is still only a slight advantage to using a partially

trained network.

521

V. Noise Reduction Using A Multi-Layer Perceptron

Introduction

The purpose of this chapter is to discuss whether a

multi-layer perceptron can be trained to reduce noise in a

signal. The first section briefly discusses the background

of using a multi-layer perceptron as a noise reduction

device. The second section describes the testing to be

performed. The third section presents the results of test-

ing and recommendations.

Background

Tamura and Waibul suggest that the multi-layer percep-

tron can be used to reduce noise from speech (13). They

contend that a multi-layer perceptron should be able to map

noisy speech signals to noise-free signals since "An arbi-

trary decision surface can be formed ..." (13:553). In

their work they state that the noise reduction is "compara-

ble to or better than the conventional power spectrum sub-

traction method." (13:556). This seems reasonable since a

multi-layer perceptron should be able to find the mapping

necessary to act as a filter.

Testing

Testing is performed in two phases. In the first phase,

the signal source consists of three sine waves at various

frequencies that are added together. Then uniform pseudo-

52

random noise is added and the network is trained to remove

the noise from the signal. In the second phase, speech

sampled at 8 KHz is used as the signal source. Again uni-

form pseudo-random noise is added and the network is trained

to remove the noise.

Phase One Testing. In phase one, the signal source is

created by adding three sine waves together. The three

frequencies chosen are 100 Hz, 500 Hz, and 1000 Hz. In

addition, each of the three sine waves are allowed to vary

independently in phase over the range of -w to +r radians.

The summed sine waves are then sampled at a 8 Khz rate for a

total of 60 samples. Uniform pseudo-random noise, varying

from negative three to positive three, is added to each of

the 60 samples. The amount added is independent from sample

to sample. The resulting signal-to-noise ratio is about 0

db.

After the 60 samples are presented for training, 60 new

samples are produced by adding three sine waves at the orig-

inal frequencies but with newly chosen random phases. Again

uniform noise varying from negative three to positive three

is added to each of the 60 samples.

Since a multi-layer perceptron can only produce an out-

put from zero to one (that is, when using a sigmoid whose

output varies from zero to one), the desired output values

are the original samples (with no noise added) scaled

linearly from zero to one. This keeps the errors between

zero and one. After training, the outputs are re-scaled to

53

..'|,l i ~ , . . .

the range of negative three to positive three to allow full

reconstruction of the output signal.

A three layer multi-layer perceptron with 60 neurons in

each layer is then trained to remove noise. After 200000

training iterations, training is stopped and the network

tested. Testing data consists of generating new sine waves.

In the first test, the three original sine waves are summed

together and no noise is added to the resulting sine wave.

In the second test, new data is generated, the three origi-

nal sine waves are summed together, and noise is added.

Finally in the third test, sine waves consisting of a single

frequency with no noise are presented to the network.

Phase Two Testing. In phase two, the utterance of the

word "one" is digitized (8 bits) at a 8 Khz rate for a total

of 2280 discrete samples. The network scans the utterance

taking 60 samples at a time, from the beginning to the end.

When the end of the utterance is reached, the network

returns to the beginning for another pass. One complete

pass is considered to be one training iteration. As before,

uniform pseudo random noise is added to achieve a signal-to-

noise ratio of 0 db.

Again, a three layer multi-layer perceptron consisting

of 60 neurons in each layer is trained to remove the noise.

After 250000 training iterations (a total of 9.5 million

presentations of 60 samples each are used), training is

stopped and the original along with other speech samples are

presented to the network, with and without noise to test the

54

i l i i - i I | | i-i -

performance of the multi-layer perceptron. Finally, as in

the phase one testing the inputs and outputs are scaled as

necessary.

Results and Discussion

Figure 18 shows the output from the phase one trained

network at the original frequencies with no noise added. The

output is very close to the original waveform. When noise

is added to the signal, the output again appears to resemble

the original waveform as seen in Figure 39.

Value

2

-1

-2

-3
0 5 10 15 20 25 30 36 AO 45 50 56

Output Neuron Number

- .Desired Output ... Actual Output

Figure 38. Output With No Noise Added.

If different frequencies are tried, the output no longer

matches the original waveform. Figure 40 shows the output

* versus the input for a noise free signal generated by three

sine waves at the frequencies 50 Hz, 750 Hz, and 1500 Hz. As

seen in Figure 40, there is the presence of the three origi-

* nal frequencies. There are approximately 7.5 small cycles

(caused by the 1000 Hz training), 4 larger cycles (caused by

55

fI

Value

2

-2

-.

0 5 10 15 20 26 30 35 40 46 50 55

Output Neuron Number

- - Desired Output - Actual Input - - Actual Ouput

Figure 39. Output With Noise Added.

Value
3

0 5 10 15 20 25 30 35 40 45 50 55

Output Neuron Number
.Dsred Output - Actual Output

Figure 40. output When the Input Frequencies are 320,

810, and 1330 Hz With No Noise Added.

the 500 Hz training), and a curving affect (caused by the

100 Hz training) for this input. Other sets of input

frequencies show the same characteristic output as seen in

Figure 40 (see Figures 41 and 42).

56

Value
3

-2

-3 i~I1 s 1 t~ H]l ii] l H1 []1

0 5 10 15 20 25 30 36 40 46 50 56

Ouput Neuron Number
Desred Output - - Actual Output

Figure 41. Output When the Input Frequencies are 50,
750, and 1500 Hz With No Noise Added.

Vaiue

4

-4

0 6 10 15 20 25 30 36 40 46 50 66

Ouput Neuron Number
es- Oaired Output -.Actual Input - • Actual Output

Figure 42. Output When the Input Frequencies are 50,

750, and 1500 Hz With Noise Added.

When individual sine waves are introduced, the effect

becomes more pronounced. Figures 43 and 44 clearly demon-

strate that the multi-layer perceptron has a "high Q" factor

at each of the three original frequencies. It is also clear

that the network is still filtering, but unfortunately the

57

Value, ," *i I.
4 : ', I',, :, ,

2 .

-2

-6 ,* I

-4

0 5 10 15 20 25 30 35 40 46 50 55

Output Neuron Number

- Desired Output .--.- Actual Input - . Actual Output

Figure 43. Output When the Input Frequency is 300 Hz
With Noise Added.

Value

4 - ***

2

0

0 -2

4S ' i V

0 5 10 15 20 25 30 35 40 46 50 556

Output Neuron Number
Desired Outpu--Actual input Actual Output

Figure 44. Output When the Input Frequency is 800 Hz

With Noise Added.

output seems to consist primarily of a "ringing" at the

three original frequencies.

Figures 45 and 46 show the reproduction of the speech

samples from the phase two testing. As shown, the output

signals do not match the input waveforms. Despite the

58

'.q

....,, , : , ; ...,, , t , ,_

Value
60

40 ,"

20-

0- %

-40

-60 I ' I''':'' I I I
0 5 10 15 20 25 30 35 40 45 50 56

Output Neuron Number

-Desired Output - . Actual Output

Figure 45. Part of the Word "One" With No Noise Added.

Value
150

100,

-5050 . ..-. : ,

-H,1 ...- I. ...
* * S w • r

-100 ,,, ,,I,, ,: ,

-150
0 5 10 15 20 25 30 35 40 45 50 55

Output Neuron Number

- - Desired Output-------- Actual Input - Actual Output

Figure 46. Part of the Word "One" With Noise Added.

lengthy training, the network is not able to handle all the

various frequencies that are found in the speech waveform.

This may be a function of the number of neurons used in the

hidden layers. Therefore, different network sizes should be

tested to determine whether the number of frequencies that

can be resolved might be a function of the number of neurons

59

, 71, - .

used.

In conclusion, it has been shown that the multi-layer

perceptron will resonate at the trained frequencies and will

produce signals at these frequencies regardless of the

input. There may also be a limit to the number of frequen-

cies that this type of network can accommodate. Also, since

these experiments were unable to reproduce the results

obtain by Tamura and Waibul, it is recommended that the

method they describe not be used for noise reduction since

other methods exist that require less computation and obtain

better results.

Finally, the reader is also advised to see the thesis

work of Captain Kevin Cox (1) for further descriptions of

experiments in this topic area.

60

VI. Isolated Word Recognition Using a Multi-Layer

Perceptron and a Kohonen Self-Organizing

Feature May

Introduction

The purpose of this chapter is to develop an isolated

word recognition system using a multi-layer perceptron and a

Kohonen self-organizing feature map. The first section

briefly discusses the structure of the system and how it

funCtions. The second section describes the training of the

neurons for the system. The third section describes the

testing that is to be performed. The last section presents

the results and recommendations for future use.

Background

It has been noted that the spectrograms for the same

English word spoken by independent speakers are very similar

(6:45) and it was once believed that these spectrograms

could be used by the deaf as a new language (7:312). Figure

47 shows the spectrogram for the phrase "We are here" spoken

by independent speakers. If the spectrograms for the same

word are similar, it is hypothesized that these Fourier

representations of the word can be mapped to the same loca-

tion on a Kohonen network since, as mentioned in chapter

one, a Kohonen network has the property of grouping similar

inputs together.

The system to be discussed in this chapter is based on

61

.. 4.
.~-

We are here We are here
(male low pittch) (male high pitch)

We are here We are here
(female lotw pitch.) (female high pitch)

Figure 47. Spectrograms for the Phrase "We are here."

(From 6:45)

using a 10-by-10 Kohonen network to store the spectrograms

for the words "zero" through "nine" of one speaker. When

the spectrogram of a word enters, it is stored temporarily

in short-term memory. The spectrogram is then "seen" by

each neuron in the Kohonen network. The weights of one of

the neurons in the Kohonen network will be closer to an

input spectrogram than the other neurons, when measured in

Euclidean distance (or dot product). This neuron will then

have the maximum output relative to the other neurons for

the Kohonen network. By using two MAXNET's above the

Kohonen network, the x and y coordinate of the winning

neuron can be established. These coordinates are fed to a

three layer multi-layer perceptron consisting of 40 neurons

in the first layer, 40 neurons in second layer, and 10 neur-

ons in the output layer. The multi-layer perceptron then

62

transforms the location from the Kohonen network to an out-

put neuron. That output neuron's position is such that it

represents the word that was spoken. Thus, the output neur-

ons for the multi-layer perceptron are labelled "zero"

through "nine". Basically, the multi-layer perceptron is

acting as a reference table, converting location from the

Kohonen network to an output which represents the numerical

value of the word spoken. Figure 48 shows a diagram of the

system.

outputs' 0 1 9

10 neurons) t ..

40 neronsMulti-Layer
~~uon$1 Perceptron

40 neurons)

x f 2 MAXNETs

Kohonen net(1OxlO)

Shor t Term Memory (62x15)

Figure 48. Diagram of the Speech Recognition System.

Before any training or testing, all speech files are

filtered using a digital lowpass FIR filter that has a

cutoff frequency of 3 KHz with the results being stored in

63

new files. In addition, where each word begins and ends in

all the files is recorded beforehand while viewing the

speech waveforms on a CRT.

TraininQ

Training consists of selecting a word at random from a

filtered file of ten digitized (8 bit) words sampled at 8

KHz. Next, two random numbers ranging from -500 to 500, are

added one each to the start and stop locations of the ran-

domly chosen word. This method of selecting a sample word

enables segmenting routines to have some leeway in selecting

the starting and stopping locations. This method also

allows the Kohonen network to store numerous "views" of the

spectrograms of the words at various lengths, instead of

storing the same "view" for each of the ten words if the

same starting and ending locations been chosen.

Next, the length (stop - start) of the utterance is

obtained and is used to compute a ratio (either up or down

sampling the utterance chosen) such that the total number of

Fourier transforms (62 transforms of 64 samples each, repre-

senting 0.496 seconds of speech) is always the same. This

has the effect of uniformly expanding or compressing each

utterance to the same length, similar to the effect found in

Dynamic Time Warping.

From this scaled utterance, 64 samples are taken and the

Fast Fourier Transform is then computed. Next, the magni-

tudes of the positive frequency coefficients are computed.

64

These magnitudes are then logarithmically added together

into 15 separate coefficients to compensate "...for the

ear's decreasing frequency resolution with increasing

frequency" (7:300). Finally, the resulting 15 coefficients

are energy normalized. These coefficients are stored in an

array and the next 64 samples are retrieved. The process is

repeated until a total of 62 Fourier transforms are taken

(which represents 0.496 seconds of speech). This produces

an 62x15 array that represents the spectrogram for an utter-

ance stored in short-term memory.

The 62x15 array is then fed to the Kohonen network.

Since each neuron in the Kohonen network will store a spec-

trogram, each neuron will have 930 weights (62*15 = 930).

Next, the Kohonen network goes through its training which

consists of selecting the neuron whose weights are the clos-

est to the input when measured in Euclidean distance. In

addition, those neurons that are in the neighborhood of the

winning neuron have their weights slightly adjusted such

that they move closer in Euclidean distance to the winning

neuron. The neighborhood size originally starts with one

half of the size of the network. As time progresses, this

neighborhood size decreases until only the winning neuron is

updated. During the last 1000 training iterations, the word

that was randomly chosen is recorded along with the winning

neuron location from the Kohonen network. This provides a

long-term memory map of word versus location by which the

multi-layer perceptron can be trained, and is shown in Fig-

65

ure 49.

9 6 6 6 6 8 8 8 8

8 6 6 6 8 X X X 7 7 1

7 6 6 8 8 X 4 3 7 1 1

6X X 8 8 4 3 3 X 19

52 22 4 33 35S9
,., X = undefined

4 -X 2 2 2 33 1 X X 9 9

3 0 0 4 2 12 31 X 19 X X

2 0 X 4 4 2 2 1 1 X 5

0T 7775 5
0 1 2 3 4 5 6 7 8 9

Figure 49. Memory Map.

Training for the multi-layer perceptron begins by ran-

domly selecting a location from the map. Two small random

values are generated ranging from -0.4 to 0.4. One of the

random numbers is added to the x coordinate and the other to

the y coordinate. This ensures that each recorded location

from the map is surrounded by hyperplanes within the multi-

layer perceptron, since errors may be occur if the hyper-

planes are to close to a recorded location. The output from

the multi-layer perceptron is checked to ensure that the

word computed matches the word chosen from the map. If not,

the multi-layer perceptron corrects the weights and thresh-

66

7

olds of its neurons. Note, if a position in the map has no

word associated with it, a different location is chosen

randomly.

Testina

During testing three different digitally filtered speech

files are used. One file is from the original male speaker

that was recorded at a different time than the one used in

training. The other two 8 Khz files are from a female and a

different male speaker. In each case, the starting and

stopping location of each word is known.

Each speaker is tested in a similar manner: first,

using the known starting and ending locations for each of

the 10 words, then using locations that are within plus or

minus 500 samples of the known starting and stopping loca-

tions for each word.

Results and Discussion

When the network is tested by using the original speaker

at the known starting and ending locations for each word,

the network achieves 100 percent correct word identification

as shown in Table III. However, when different starting and

ending locations are used, the accuracy starts to fall off

as seen in Table IV. In one case, as shown in Table V, only

the ending location for the word "zero" is changed and the

wrong answer is produced; whereas in the previous sample, a

lower starting location (see Table IV) is used and the cor-

67

rect answer is achieved. The overall accuracy for five

tests is 80 per cent.

Table III. First Male Speaker Using Known Starting and
Ending Locations

Desired Location Actual Kohonen Neuron
Output Entered Output Selected

0 940 - 4420 0 0,3-
1 4780 - 8260 1 9,9
2 8900 - 11860 2 3,4
3 13180 - 16200 3 5,4
4 17640 - 20480 4 2,2
5 21800 - 24420 5 9,2
6 25480 - 28900 6 0,8
7 30120 - 33200 7 6,0
8 35050 - 37480 8 4,7
9 38940 - 42160 9 9,5

Table IV. First Male Speaker Using Different Starting
and Ending Locations - Set One

Desired Location Actual Kohonen Neuron
Output Entered Output Selected

0 900 - 4000 0 1,2
1 4500 - 8500 1 9,8
2 8600 - 11560 2 2,4
3 13000 - 16000 3 4,4
4 17400 - 20680 4 2,2
5 21300 - 24900 9 9,3
6 25000 - 29100 6 0,8
7 30600 - 33000 7 7,7
8 35300 - 37200 8 7,9
9 38540 - 41760 9 8,4

68

Table V. First Male Speaker Using Different Starting
and Ending Locations - Set Two

Desired Location Actual Kohonen Neuron
Output Entered Output Selected

0 940 - 4000 4 2,1
1 4980 - 8100 1 9,9
2 9200 - 12160 3 4,5
3 13400 - 16400 3 6,5
4 17840 - 20280 4 2,1
5 22000 - 24220 5 9,0
6 25700 - 28600 6 0,8
7 29900 - 33400 7 6,0
8 34850 - 37680 8 4,7
9 39340 - 42560 9 8,5

O When the female speaker is tested first at the known

starting and ending locations, as shown in Table VI, the

accuracy drops off dramatically. Table VII shows a sample

* of the results when other locations are tried. Overall, out

of five tests the accuracy is about 32 per cent.

Table VI. Female Speaker Using Known Starting
and Ending Locations

Desired Location Actual Kohonen Neuron
Output Entered Output Selected

* 0 3500 - 7340 5 8,2
1 7960 - 11160 9 9,4
2 12660 - 15420 7 6,0
3 17340 - 20100 3 5,4
4 22020 - 24760 5 8,0
5 26460 - 29200 9 9,3

* 6 30940 - 33980 6 0,8
7 35420 - 38700 7 6,1
8 40140 - 42480 8 3,7
9 44000 - 46740 9 9,4

F

69

L

Table VII. Female Speaker Using Different Starting
and Ending Locations

Desired Location Actual Kohonen Neuron
Output Entered Output Selected

0 3600 - 7280 5 8,2
1 8290 - 11500 5 7,5
2 13000 - 15750 3 4,5
3 16900 - 20480 7 5,1
4 22300 - 24950 2 8,8
5 26860 - 28800 5 9,1
6 30640 - 33800 6 0,7
7 35000 - 39100 2 0,5
8 40400 - 42280 8 6,9
9 43800 - 46540 9 8,4

Finally, the other male speaker is tested using known

starting and ending locations; the accuracy of the network

again drops, as seen in Table VIII. Table IX shows a sample

of the results when different locations are tried. Overall,

the accuracy of the network is about 44 per cent out of five

tests.

Table VIII. Second Male Speaker Using Known Starting
and Ending Locations

Desired Location Actual Kohonen Neuron
Output Entered Output Selected

0 2840 - 5980 7 5,1
1 7060 - 10080 5 9,0
2 11900 - 14480 7 7,8
3 16500 - 19360 7 7,8
4 21380 - 23920 4 3,1
5 25680 - 28720 5 9,1
6 29520 - 33480 6 1,6
7 34120 - 37720 7 7,0
8 39040 - 41060 7 7,8
9 42900 - 46120 9 9,6

70

7I 7-

Table IX. Second Male Speaker Using Different
Starting and Ending Locations

Desired Location Actual Kohonen Neuron
Output Entered Output Selected

0 2900 - 5600 0 1,3
1 7100 - 9900 1 9,7
2 11800 - 14800 2 2,5
3 16600 - 19500 7 7,8
4 21600 - 24000 4 4,0
5 25180 - 29220 5 9,2
6 29600 - 33700 6 1,6
7 34000 - 38000 5 8,2
8 38900 - 41260 7 7,8
9 42400 - 46620 9 8,3

The system appears to be fairly accurate at speaker

dependent word recognition. One benefit of this system is

that it allows whole word recognition to be performed rather

than having to find good phoneme samples as in other speech

recognition systems.

Improvements can be made in this system, since other

tests have shown that using the Euclidean distance of the

spectrograms is not a good measurement to use for word

matching whether for individual or different speakers. It

is recommended that the neurons in the Kohonen network use

more than just Euclidean distance. This may help alleviate

the problem of matching words among different speakers. -

Also, as seen in Figure 49, the words could be distrib-

uted throughout the map. Therefore, it is recommended that

the Kohonen map be divided into equal areas for each word

before training is started. Then as training proceeds,

force (that is, supervised the training) the Kohonen network

to map words into their preselected areas. This will group

71

the words together and make the problem of transforming

location to word easier, while creating generic templates

for each word. "Supervised retuning" of the Kohonen network

for additional speakers may also alleviate the problem of

speaker dependency.

Finally, a single-layer perceptron should suffice to

translate location to word output instead of requiring a

multi-layer perceptron.

72

72

VII. Improvement of the Basic Neuron

Introduction

The purpose of this chapter is to discuss how the basic

neuron model found in the single-layer and multi-layer per-

ceptron can be improved to increase its computational power.

The first section will introduce the alterations made in the

basic neuron model. The second section describes the

changes in the training rules for the single-layer and mul-

ti-layer configurations. The third section will introduce

some added capabilities that are provided by the new neuron

model. The fourth section describes the testing to be per-

formed. The last section presents the results of testing

and the need for further research.

Improvements

It is interesting to note that the equation shown in the

article by Lippmann (5:13) to calculate the actual output of

the perceptron uses one weight for every input. Looking

closer at this equation reveals the weights are multiplying

functions of the inputs. That is, x0 can be expressed as x0

+ 0 * X1 + 0 * X2 + ... + 0 * Xn, and so on for each input.

The question that arises is: "Can any function composed of

the inputs be tied to these weights?" If so, then perhaps

the neuron could increase its computational power.

Therefore, the major change proposed here for the basic

neuron is the introduction of function generators, of which

73

any number can be used, as seen in Figure 50. These func-

tion generators shared the inputs and use any combination of

X01

U U - .S

ik
Xm- /

Figure 50. Usual Neuron With Changes.

the inputs as needed. For example, some of the functions

that may be provided are:

f0(x0,xl,...,Xm I) =x 0 , (13)

fl(xO,xl,..,xm-l) X1 * X2 , (14)

f2(x0,xl,...,Xm I) =sin(x0), (15)

f3(XO,xl,...,xml) X1 , (16)

f4(x0,xl...,xm-l) =random(), (17)

and so on. To convert the new neuron model, referred to

subsequently as a "neurolog", to a basic neuron all that is

required is to have -the weights of the function generators,

except those that only use the inputs, be set to zero.

Random numbers could also be used, as in equation (17). A

74

random number generator may be helpful for when a neurolog

is required to generate its own output with little or no

inputs.

The output of the function generators are then multi-

plied by the weights attached to these generators and summed

together with a threshold. The summation output is then fed

to a discriminative function and the output is created.

As training progresses, all of the function generators

provide outputs in parallel. The neurolog then selects

those functions that will help solve the problem at hand.

Those functions contributing will have their weights

updated, while all other unnecessary functions will have

their weights set to approximately zero.

The discriminative function may be either the hard lim-

iter, as seen in Figure 51, or the sigmoid function, as seen

in Figure 52.

There is an added feature that is has not been exploited

with the usual neuron, namely the possibility of a multi-

level output. A multi-level output would enable a single

neurolog to discriminate more than one class. This capabil-

ity is the consequence of the more intricate discriminative

functions made possible by non-planer hypersurfaces; this

will be discussed later in more detail.

Finally, one neurolog can be combined with other neurol-

ogs so that even more complex hypersurfaces can be created

through the computational power found in a multi-layer per-

ceptron.

75

1.5-

1 -

0.5-

0-

- 1 5
..........

-10 0 10

Figure 51. Hard Limiter Function.

1.57

1

0.5-

-0.5-
-1

-10 0 10
x

Figure 52. Sigmoid Function.

76

Training

The following is based on the work of Rosenblatt, Wer-

bos, Parker, Rummelhart, and others who developed the cur-

rent training rules used by the single and multi-layer per-

ceptrons.

Initially, the constant 0 in Figure 50 will be assumed

to be zero and therefore, only a two level output is consid-

ered.

First, the function generators may use any combination

of inputs, such as those equations mentioned in (13) to

(17), that the user believes may help in solving the prob-

lem. Caution is required since some functions will not

accept all values; for instance, log xi would require some

apriori knowledge that the range of xi is greater than zero.

Next, set the weights and thresholds to small random

values (typically between -0.5 and +0.5). Then present the

new input and the new desired output. Finally, calculate

the output using either the hard limiter or the sigmoid

function. That is,

for the hard limiter

N
y(t) = fh(i wi(t) fi(xO(t),xl(t),...,Xml(t)) -8) (18)

for the sigmoid

N
y(t) = fs('0 wi(t) fi(xO(t),xl(t),...,xml(t)) -e) (19)

i=0

where N is the number of function generators, wi(t) is the

weight i tied to the function generator at time t, m is the

number of inputs which may differ in number with the number

of weights, e is the threshold, fh is the hard limiter

77

function, and fs is the sigmoid function.

To adapt the weights if using the hard limiter:

wi(t+l) = wi(t) + q [d(t) - y(t)]

fi(x0 (t), Xl(t) ,...,Xm-l (t)) (20)

where q is the gain (usually 0.2 to 0.4 and must be posi-

tive) and d(t) is the desired output (typically -1 or +1,

though 0 and +1 can be used) at time t.

To adapt weights if using the sigmoid function (this

also applies to the output nodes in a multi-layer perceptron

configuration) :

wi(t+l) = wi(t) + r [d(t) - yi(t)] (Yi(t)] (l-yi(t)]

fi(xO(t), x(t),...,Xml(t)) (21)

where all the terms are those as previously defined. Note,

it may be possible to use a momentum term, though this has
0m

yet not been tested.

If using a multi-layer perceptron configuration, the

hidden layers use:

wj(t+l) = wj(t) + 17 [yj(t)) [1 - yj(t)) [6 k{ZWq)]

fj(xO(t),Xl(t),...,Xml(t)) (22)

where yj(t) is the output of the hidden node j at time t,

6k is the error at node k in the layer above, ZWq is the sum

of the weights in node k in the layer above that use (in the

function generator of node k) the output of node j, and

fj(xO(t),xl(t),...,Xm_l(t)) is the output of the function

generator connected to weight j that is being updated.

Again, the momentum term has not been tried.(
Thresholds likewise can be updated if desired. In any

78

C

case (this applies for the sigmoid case, the hard limiter

case, and for the thresholds in the output layer of a multi-

layer perceptron) the thresholds are updated by:

e(t+l) = 9(t) - n [d(t) - y(t)] (23)

For the thresholds in the hidden layers of a multi-layer

perceptron use:

ej(t+l) = ej(t) - n yj(t) [1 - yj(t)) [Z6k(Zwq)] (24)k q=

where Oj(t) is the threshold of the hidden node j at time t.

Other Capabilities

As mentioned before, the sigmoid function has the form:

y = e / (1 + exp-(Pa + 0)) - (25)

where a = wifi(xo,xl, Xm) - 0, e is the amplitude of

the sigmoid, P is the rate at which the sigmoid rises, 0

will allow the sigmoid to shift left or right on the a axis,

and A will move the sigmoid up or down on the y axis. Typi-

cally, c is one, 0 is one, 0 is zero, and A is zero.

There are several possibilities that exist using the

general form of a sigmoid. First, P can be increased (or

decreased) or P can be allowed to adapt. Likewise, 0 can be

set or also allow to adapt.

p training is optional and the user has the choice to

either set the P term to another value greater than one or

alloo the neurolog to adapt the 9 term. Increasing P can be

useful when the data regions are close to each other.

* training is also optional and is used to generate

multi-level outputs. It also possible to do 0 training in

79

both the sigmoid and hard limiter case and this will be

discussed later.

0 Training

If an increase in 0 is to be used, it has been found

useful to change the update rules for the weights to (used

by both the single neurolog or the output layer in a multi-

layer perceptron):

wi(t+l) = wi(t) - [0/6] [yi(t) + 0] [yi(t) + 0 - e]

[d(t) - yi(t)] fi(xo(t),xl(t)...,xm-l(t)) (26)

and for the thresholds

ei(t+l) = ei(t) + [n/c] [yi(t) + 0] [Yi(t) + 0 - 6]

[d(t) - yi(t)] (27)

where all the terms are those previously mentioned. Like-

wise, for the hidden layers:

wi(t+l) = wi(t) - [0e/6] [yi(t) + 0] [yi(t) + 0 - C]

[6k(ZWq}] fi(xo(t),xl(t),'...xm_l(t)) (28)

and for the thresholds in the hidden layers:

ei(t+l) = ei(t) + [W/f] [Yi(t) + 0] [Yi(t) + 0 - E]

[E6k{Zwq)) (29)

again all terms are those previously mentioned.

Finally, if P training for each neurolog is desired then

use:

P(t+l) = P(t) - 9 ([-i/(2p2)] [d(t) - y(t)] 2

+ [a/ep] [d(t) - y(t)] [y(t) + 0]

[y(t) + * -C]) (30)

where a = wifi(xo(t),xl(t),...,m_l(t)) - 8(t) and all other

s0

terms are those previously mentioned. For the hidden layers

use:

P(t+l) = P(t) - (7lc/E) [y(t) + 0] [y(t) + -]

CZ6k(Ewq)] (31)

where all terms are those previously mentioned.

0 Training

Typically, 0 is set to zero. However, by using a 0 term

and by allowing more than one sigmoid function, the neurolog

can generate multi-level outputs. In turn, multi-level

outputs allow for more than one class to be discriminated.

The case considered here is to illustrate that multi-class

discrimination is possible for a single neurolog. There-

fore, the equations introduced do not necessary apply for a

multi-layer perceptron configuration.

As shown below in Figure 53, that if two typical sig-

moids are added together that three distinct levels are

produced.

0O + 0 0 -0T0

Figure 53. The Addition Of Two Sigmoids.

Thus, the summed sigmoids can be expressed as:

f(a) = 1 / (1 + exp(-a+o)) + 1 / {l + exp(-a-0)) (32)

81

As a result, the update rules become more complex. The

update rule for the weights become:

wi(t+l) = wi(t) + q [d(t) - y(t)]

[exp(-al) / (1 + exp(-al)) 2

+ exp(-a 2) / (1 + exp(- 2))
2]

fi (x0(t) , Xl(t) ,..., Xm-l(t)) (33)

where a, = [wi(t)fi(xO(t),xl(t),...,Xm l(t)) - 6] - 0,

and a2 = [wi(t)fi(XO(t),Xl(t),...,Xml(t)) - 8] + .

Likewise for the thresholds:

e(t+l) = 8(t) - n [d(t) - y(t)]

[exp(-al) / (1 + exp(-al)) 2

+ exp(-a 2) / (1 + exp(-a 2))
2] (34)

where a, and a2 are as previously mentioned. Finally, to

allow p to train use:

0(t+1) = p(t) + n [d(t) - y(t)]

-exp(al) / (1 + exp(-al)) 2

+ exp(-a 2) / (1 + exp(-a 2))
2] (35)

The hard limiter case proceeds in the same fashion. If

two hard limiters are added together, the result is a three

level hard limiter function as seen in Figure 54. The new

hard limiter can be expressed as:

f(a) = (a + 0) / abs(a + 0) + (a - #) / abs(a - *) (36)

where abs() is the absolute value and when a equals or - ,

the resulting 0/0 equals 1.

In the hard limiter case, the weights and thresholds

change as before (see equations (20) and (23)). The

82

.. m i m mmNm m uml i ~ m

U-1

- - , , - *i-- -4- -

Figure 54. The Addition Of Two Hard Limiters.

training for the hard limiter case is:

0(t+l) = 0(t) + n [d(t) - y(t)] (37)

Testing

First, a single neurolog is tested using a hard limiter

to do the classical exclusive-or problem as seen in Figure

55. In this example, the function generators chosen are:

f0 (x0 ,xl) =x,

fl(x 0 ,xl) Xl,

f 2 (x 0 ,xl) sin(x0),

f 3 (x 0 ,xl) = sin(xj) , and

f 4 (x 0 ,x 1) = x0 * x1.

The weights (w0 ,w1 ,w2 ,w3 ,w4) are all randomly set to values

between -0.5 and +0.5. Since this is a two class problem, 0

is not needed. After every 20 training iterations, training

is stopped and 50 tests are performed to determine the neur-

olog's accuracy. Test data is chosen from one of the four

data regions at random. Figure 56 shows the neurolog's

accuracy as training progresses.

83

.2

-* .4-
-O~ U!S 0.~ &345.2 +@1I2 +@!4 4 0.*.?..

L.0

Figure 55. Exclusive-Or Data.

As can be seen in Figure 56, accuracy develops at an

extremely high rate. This type of problem would take at

least a two-layer perceptron to solve (training time would

depend on the size of the net used). However, it can be

seen that one neurolog can handle this problem. The result-

ing weights and thresholds (after 5000 training iterations)

are:

w0 = -0.265606,

w, = 0.071703,

W 2 = -0.149933,

W 3 = 0.216150,
I

W4 = 3.587245, and

9 = 0.136775.

84

90

go-
80

70

50

500

40

30

20

10

0 400 800 1200 1500 2000

of Training Iterations

Figure 56. Training Accuracy for the Exclusive-Or Data

Problem.

As might be expected the sine functions are not needed

and the training procedure sets their weights to be small;

that is also the case for the x0 and x, function weights. By

inspection of Figure 56, it can be seen that x0 * x, can be

used to tell the difference between these two classes and

the resulting w4 shows that the neurolog learned this fact.

The next example uses a three class problem as shown in

Figure 57. This time the function generators used are:

f0o(x,x) = x0,

f1 (xO'x1) = X'-

f2 (x0 'xl) = x0

85

×1

.0.4-

- -016 -. -O4 -02 - +84 +0!6 .' 1
-. 2..

-.4

Figure 57. Three Class Problem.

f3 (x0 ,xl) = .12, and

f4 (x0 ,xl) = x0 * x1.

The weights and threshold are set as before. Since the

single neurolog is required to discriminate between three

classes, 0 is required and is randomly set between 1.0 and

2.0 (testing has shown that is best to start with 0 greater

than or equal to 1.0).

After every 10 training iterations, training is stopped

and the neurolog is tested for accuracy. Figure 58 shows

the neurolog's accuracy as training progresses. Though this

problem is simplistic, it does serve to illustrate the capa-

bility that a single neurolog can provide. Figure 59 shows

the neurolog's training accuracy when the desired outputs

86

100-

90-

80

70-

50
0

40

30

20

10

0

0 200 400 600 800 1000

Sof Training lieations

Figure 58. Training Accuracy for the Three Class

Problem.

are "switched" such that Class A is +2, Class B is 0, and

Class C is -2.0. This requires a much complicated complex

hypersurface and therefore more training is required. Per-

haps more functions could be used to increase accuracy and

decrease training time since it is conceivable that a hyper-

surface does exist that would intrinsically separate the

three classes.

Figure 60 shows the accuracy when using a sigmoid

instead (rate (p) equals 5.0) of the hard limiter for the

example shown in Figure 55. Figure 61 shows the accuracy

when using a neurolog (also for the example shown in Figure

87

100

go-

80

70

60

500

40

30

20

10

0

0 20000 40000 60000 80000 100000

of Training Itwolons

Figure 59. Training Accuracy for the Three Class
Problem with the Order of the Class
Values Switched.

55) that has been allowed to train the rate term within the

sigmoid function. As seen in both Figures 60 and 61, that

the sigmoid requires more training time than required for a

hard limiter. This is because the sigmoid produces errors

as it slopes from one data region to the next.

To illustrate that the neurolog can be used in a multi-

layer perceptron configuration, a neural net shown in Figure

62 is constructed. The data consist of three classes with

uniformly distributed data as shown in Figure 63. All the

neurologs in the net used a constant rate (p) of 5.0. Figure

88

64 shows the accuracy versus training time.

1001

90

80

70

60

0

3000-

10
20

10

0 1 ' " '" ";... " " "

0 50000 100000 150000

of Training Iteations

Figure 60. Training Accuracy Using the Sigmoid Function
for the Exclusive-Or Problem.

Conclusions and Recommendations

The improvements made for the basic neuron has increased

the computational power of a neuron. The ability to connect

the neurologs in a multi-layer perceptron configuration will

allow a decrease in the number of functions that any one

neurolog needs.

Overall, the neurolog should increase the computational

power of neural networks. Its capability to create complex

hypersurfaces will obviously assist in data classification

89

.

100-

90

80

70

60-

0 50-0
0

40 . .

30

20-

10

0

0 50000 100000 150000

8 of Training tawations

Figure 61. Training Accuracy Using Rate () Training for

the Exclusive-Or Problem.

and help decrease net size. Multi-level outputs along with

the capability to include random number generators as pos-

sible functions, should add new dimensions (such as guess-

ing, the study of chaos, game playing, and so on) as neural

networks are required to solve increasingly complex prob-

lems.

However, more investigations will be required in this

area to determine what functions may be required to solve

even a modest problem. Perhaps a search algorithm could be

developed to assist in finding the functions that may be

required by the neurolog. Also, research will be needed to

90

determine how many classes could be solved by one neurolog

since it is possible to add more sigmoids or hard limiters

together to provide additional multi-level outputs.

Finally, feedback or lateral inhibition may be possible

since these "new" inputs are no more than a complex function

of the "old" inputs.

A 8 C
(p'

X 0X)
0 *1

Figure 62. Neurologs in a Multi-Layer Perceptron Con-
figuration.

91

1.

i
-0f 0 8 0: 106 M +.B

c04?
Fiur 6.Daa orte uli-aerPecetonCofiu

rainBet

- - - - - -II-92

100-

90-

80-

70-

60-

0

40

30-

20-

10-

0 I m

0 20000 40000 50000 80000 100000

of Training Itsrctions

Figure 64. Training Accuracy for a Multi-Layer Perceptron
Configuration.

93

VIII. Conclusion

Because of the numerous problems researched in this

thesis, recommendations and conclusions for each topic can

be found at the end of the corresponding chapter.

94

Bibliographv

1. Cox, Kevin S. An Analysis of Noise Reduction Using
Backpropagation Neural Networks. MS Thesis,
AFIT/GE/ENG/88D-3. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1988.

2. Dahl, Edward D. "Accelerated Learning Using The Gener-
alized Delta Rule," IEEE First International Confer-
ence On Neural Networks, 2: 523-530 (June 1987).

3. Greenwood, Dan. "Netrologic Neural Networks Tutorial."
Tutorial prepared by Netrologic, San Diego, CA.

4. Kohonen, Teuvo. "Self-Organizing Maps," Tutorial from
the IEEE First Annual International Conference On
Neural Networks. San Diego, CA. 21 - 24 June 1987.

5. Lippmann, Richard P. "An Introduction to Computing
with Neural Networks," IEEE Acoustics Speech and Sig-
nal Processing, A: 4-22 (April 1987).

6. Potter, Ralph K. and others. Visible Speech. New
York: D. Van Nostrand Company, Inc., 1947.

7. Rabiner, Lawrence R. and Ronald W. Schafer. Digital
Processing Of Speech Signals. Englewood Cliffs NJ:
Prentice-Hall, Inc., 1978.

8. Rogers, Steven K. and James Stright. "How Backward
Error Propagation Reduces Error." Class Handout in
EENG 621, Pattern Recognition II. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, 27 April 1988.

9. Rogers, Steven K., Instructor. Personal Interviews.
School of Engineering, Air Force Institute of Technol- ..
ogy (AU), Wright-Patterson AFB OH, April 1988.

10. Rosati, John J. and others. "Artificial Neural Systems
(ANS) And Neural Computing." Tutorial prepared by the
Technology Training Corporation, April 1988.

11. Ruck, Capt Dennis W. Multisensor Target Detection And
Classification. MS Thesis, AFIT/GE/ENG/87D-56. School
of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987 (AD-A177598).

95

12. Shepanski, J. F. "Fast Learning in Artificial Neural
Systems: Multilayer Perceptron Training Using Optimal
Estimation," IEEE International Conference On Neural
Networks, 1: 465-472 (July 1988).

13. Tamura, Shin'ichi and Alex Waibel. "Noise Reduction
Using Connectionist Models," IEEE International Con-
ference On Neural Networks, .1: 553-556 (April 1988).

14. Yang, Hedong and Clark C. Guest. "Performance of Back-
propagation for Rotation Invariant Pattern Recogni-
tion," IEEE First International Conference On Neural
Networks, 4: 365-370 (June 1987).

0

96

C

Vita

F,2aptain Mark K. Lutey

He graduated fromn Cuyahoga Falls High School,

K hogaFalls, Ohio in 1974. Captain Lutey recejlved a

-chelor of Science degree in Electrical Engineering frorn

:t11h Dakota State University in May 1983. Upon graduation

-~received a commission in the USAF and was assigned to

"2pace Command, Buckley ANGB, Colorado. Captain Lutey

-nered the Masters Program in the SchozJ of Engineering,

4- Force Institute of Technology, in June 1987.

97N

SECURITY CLA551FICATION OF THISPAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. O7O-%1u

Is. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

UL~aSSIFIMI _ _ _ _ _ _ _ _ _ _ _

20. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
APPROIVED FOR PUBLIC REIEASE

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE DISTRIBUTIN L=IMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/MC/88D-23

I6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering (N apabe)

I AFIT/_ _ __ _ __ _ __ _

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AM, OH 45433

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT I TASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

PROBLEM SPECIFIC APPLICATIONS FOR NEJRAL NEMORKS (UNClASSIFIED)

12. PERSONAL AUTHOR(S)
Mark K. Lutey, Captain USAF

",ta. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) I1. PAGE COUNT
MS Thesis FROM TO 1988 December ill

16. SUPPLEMENTARY NOTATION

17. COSATI CODES EC E otinue y necery and oby.0ck me

FIELD GROUP I SUB-GROUP Spee=J Reco:gniti3on, kvUL: -~ r -- r e~ o s r a 6~e-v:rK,
FDU U Oo1en Network, Neurolog, Accelerated Learning For Multi-

Layer Perceptrons

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Matthew Kabriski, PhD

Professor of Electrical Engineering

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
I UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS U SSIFTED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL
Dr. Matthew Kabriski Professor, GS-15 (513) 255-5276 AFIT/ItE

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UCLASSIFIED

UNCLASSIFIED

Continued fr 19: Abstrt. t
The purpose is thesis is t examine4 everal topics

relating to neural fetworks. First, the investigation of the
error output for a multi-layer perceptron is examined to
determine if the error calculation can be modified to decrease
the traini'ng time.-The result is a slight improvement.

Next~he sigmoid function usually used by multi-layer
perceptrong is investigated to determine if modifying terms
within the sigmoid function will decrease training time. An
improvement is found in the performance and in some casesiby
much as an order of magnitude.
,-_--4Yhs Jhe subject of adding an additional class to the
problem space is examined. Regardless of the data class added
or the network size, there is no advantage to using a pre-
viously trained multi-layer perceptron as a starting state to
be trained additionally to include the new data class. Noth-
ing is gained compared to starting the network s
untrained state.

This is followed by n investigation to determine whether
a multi-layer perceptron can be used to reduce noise added to
a signal. Results show that the multi-layer perceptron, when
trained with three specific frequencies, reduced noise but
would "resonate" at these frequencies only. The network may
also be limited to the number of individual frequencies on
which it rIrueotpevr se .

Nextp the combination of using a Kohonen self-organizing
feature map and a multi-layer perceptron to perform isolated
word recognition is tested. An 80 per cent accuracy is
achieved for speaker dependent, isolated word recognition. (j'
Accuracy falls to approximately 40 per cent for speaker inde-
pendent, isolated word recognition.

Finally, an improvement in the basic neuron element usu-
ally used by the single and multi-layer perceptrons is pre-
sented. Results show that the computational power for a
single neuron is greatly enhanced and that use in a multi-
layer perceptron configuration is still possible.

UNCLASSIFIED

